最新行业资讯尽在掌握
随着科技的发展,大数据已经存在我们生活的方方面面,如果我们想要了解大数据,首先我们先弄懂大数据是什么?很多事情在执行的时候都是有一定的流程的,那么大数据的处理也不例外,这是因为有关程序都是需要逻辑的,而大数据处理也需要逻辑,这也就需要流程了。那么大数据处理的基本流程是什么呢?下面就由宏图远见小编为大家解答一下这个问题。
大数据是什么?
大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据是一个数据的集合,能够反映一段时间内某一样本内的活动趋势,是现代社会一种极具价值的信息资产。大数据现在广泛应用于商业领域,借以实现精准营销,预测趋势,实现商业利益的最优与最大。
大数据的处理
既然是通过大数据来做一些事情,必然先把数据采集到手,所以第一步就是数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,在大数据的采集过程中,其主要特点和挑战是并发数高;
第二步:数据到手了,里边肯定会有一些不好的数据,我们需要把收集到的数据简单处理一下,比如把IP转换成地址,过滤掉脏数据等,导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别;
第三步:数据分析,大数据分析技术主要包括已有数据的分布式统计分析技术和未知数据的分布式挖掘、深度学习技术,统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用;
第四步:数据加工处理好了,就要可视化展现出来,做到MVP,就是快速做出来一个效果,数据可视化环节可大大提高大数据分析结果的直观性,便于用户理解与使用,故数据可视化是影响大数据可用性和易于理解性质量的关键因素。
大数据处理方法很多,但是普遍实用的大数据处理流程可以概括为四步,分别是数据采集、数据导入和预处理、数据分析和统计、数据挖掘。
大数据处理的4步流程
1、数据采集
大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。大数据的采集需要有庞大的数据库的支撑,有的时候也会利用多个数据库同时进行大数据的采集。因此对于数据库的负载以及每个数据库之间进行切换都存在着挑战。
2、数据导入和预处理
采集端有很多数据库,需要将这些分散的数据库中的海量数据全部导入到一个集中的大的数据库中,在导入的过程中依据数据特征进行一些简单的清洗、筛选,这就是大数据的导入和预处理。
3、数据分析和统计
对已经导入的海量数据依据其本身特征进行分析并为之分类汇总,以满足大多数常见的分析需求。在分析的过程中需要用到大数据分析工具。
4、数据挖掘
针对前面已经数据分类汇总,利用数据挖掘算法对这些汇总数据进行深一步挖掘。数据挖掘算法都比较复杂,没有预先设置的公式,这也是考验一个公司实力、人工智能的一个环节,只有相对准确合适的算法才能从大数据中得到有价值的数据分析结果