最新行业资讯尽在掌握
如今大数据分析已经是潮流,在各行各业中都在引用,因为只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。那么大数据分析一般是如何进行的呢?
探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学地呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速地处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。
对数据抽取与集成。这是因为大数据处理的数据来源类型丰富,大数据处理的第一步是对数据进行抽取和集成,从中提取出关系和实体,经过关联和聚合等操作,按照统一定义的格式对数据进行存储。现有的数据抽取和集成方法有三种,分别是基于物化或ETL方法的引擎、基于联邦数据库或中间件方法的引擎、基于数据流方法的引擎。这些引擎都是很重要的。
数据分析是大数据处理流程的核心步骤,通过数据抽取和集成环节,我们已经从异构的数据源中获得了用于大数据处理的原始数据,用户可以根据自己的需求对这些数据进行分析处理,比如数据挖掘、机器学习、数据统计等,数据分析可以用于决策支持、商业智能、推荐系统、预测系统等。通过数据分析我们能够掌握数据中的信息。
大数据除了将更好地解决社会,商业,科学各类问题。大部分的数据都与人类有关,要通过大数据解决人的问题。比如,建立个人的数据中心,将每个人的日常生活习惯,身体状态,社会网络,知识能力,爱好性情,情绪波动记录,这些数据可以被充分地利用,医疗机构将实时的监测用户的身体健康状况,教育机构针对用户制定培训计划,服务行业提供符合用户习的服务,社交网络为志同道合的人群相识相知,政府能在用户心理健康出现问题时有防范自杀,刑事案件,金融机构能为用户的资金提供更有效的使用建议和规划,道路交通可以提供合适的出行线路。
大数据将逐渐成为很多行业企业实现其价值的最佳途径,大数据的应用也将会全面展开。未来,大数据将成为国家战略的重要部分。