大数据时代,“千人千面”精准营销“缩圈”再升级

发布时间:2020-09-17 阅读量:2354 来源:
    如今在大数据时代,我们听到关于营销最多的一词就是大数据精准营销,已成为一个“未卜先知”的营销神器,帮助企业想客户所想,大幅提高销售转化率。它是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。更是衍生于互联网行业,又作用于互联网行业。通过依托于多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。

    一: 数据采集

    数据采集是大数据精准营销平台的基础,数据类型的多样性及数据来源的差异化是影响数据质量乃至挖掘效果的重要因素。从数据的时效性来看,可将数据类型分为:

    静态数据包括人口属性、商业属性等,主要用于用户的基本属性分析和智能标签分类。通过性别、年龄、职业、学历、收入等数据的关联分析,知道“用户是什么样的人”。

    近期数据主要为用户一段时间内的网络行为数据,通过对用户近期活跃应用、内容访问、通信行为、常驻区域等具有一定时效性数据的分析,获取用户的兴趣偏好和消费习惯等,知道“用户对什么感兴趣”。

    实时数据主要为用户实时变化的网络行为数据,包括搜索信息、购物信息、实时地理位置等,通过地理位置信息实时捕获用户的潜在消费场景,抓住营销机会,实时触达目标用户,知道“用户在哪里干什么”。

    二: 客户画像

    客户画像是精准营销模型的重中之重,其核心在于用高度精炼的特征来为用户“打标签”,如年龄、性别、地域、用户偏好、消费能力等,最后综合关联用户的标签信息,勾勒出用户的立体“画像”。客户画像可较完美地抽象出一个用户的信息全貌,为进一步精准、快速地预测用户行为、消费意愿等重要信息,提供了全面的数据基础,是实现大数据精准营销的基石。基于此,笔者建议从六个维度构建基于大数据分析的客户画像,包括人口属性、内容偏好、APP偏好、通信行为、金融征信、常驻/实时位置等。

    三: 模型构建

    常用的数据挖掘方法主要是基于客户画像体系与结果,选取相关性较大的特征变量,通过分类模型、聚类模型、回归模型、神经网络和关联规则等机器算法进行深度挖掘。常用算法的基本内容如下:

    1、分类和聚类

    分类算法是极其常用的数据挖掘方法之一,其核心思想是找出目标数据项的共同特征,并按照分类规则将数据项划分为不同的类别。聚类算法则是把一组数据按照相似性和差异性分为若干类别,使得同一类别数据间的相似性尽可能大,不同类别数据的相似性尽可能小。分类和聚类的目的都是将数据项进行归类,但二者具有显着的区别。分类是有监督的学习,即这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类则是无监督的学习,不需要对数据进行训练和学习。常见的分类算法有决策树分类算法、贝叶斯分类算法等;聚类算法则包括系统聚类,K-means均值聚类等。

    2、回归分析

    回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,其主要研究的问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。按照模型自变量的多少,回归算法可以分为一元回归分析和多元回归分析;按照自变量和因变量间的关系,又可分为线性回归和非线性回归分析。

    3、神经网络

    神经网络算法是在现代神经生物学研究的基础上发展起来的一种模拟人脑信息处理机制的网络系统,不但具备一般计算能力,还具有处理知识的思维、学习和记忆能力。它是一种基于导师的学习算法,可以模拟复杂系统的输入和输出,同时具有非常强的非线性映射能力。基于神经网络的挖掘过程由数据准备、规则提取、规则应用和预测评估四个阶段组成,在数据挖掘中,经常利用神经网络算法进行预测工作。

    4、关联分析

    关联分析是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的关联、相关性或因果结构,即描述数据库中不同数据项之间所存在关系的规则。例如,一项数据发生变化,另一项也跟随发生变化,则这两个数据项之间可能存在某种关联。

    关联分析是一个很有用的数据挖掘模型,能够帮助企业输出很多有用的产品组合推荐、优惠促销组合,能够找到更多的潜在客户,真正的把数据挖掘落到实处。4市场营销大数据挖掘在精准营销领域的应用可分为两大类,包括离线应用和在线应用。其中,离线应用主要是基于客户画像进行数据挖掘,进行不同目的针对性营销活动,包括潜在客户挖掘、流失客户挽留、制定精细化营销媒介等。而在线应用则是基于实时数据挖掘结果,进行精准化的广告推送和市场营销,具体包括DMP,DSP和程序化购买等应用。

    如今精准营销被海量数据二次赋能,而大数据精准营销作为整合营销传播的一部分,其使命和时下大火的“吃鸡”游戏中“缩圈”作用相似,即通过不断缩小“包围圈”的范围,让营销目标对象变得更加直观、具体。如此,对于激烈竞争中的企业而言,能够有效地利用大数据让“包围圈”不断缩小,从而抢占流量高地。