新一代的商业决策支持系统:智能商业

2017-09-09 10:57:39 来源: 未知
  历史上OR、BI和AI在DSS领域的应用都各自取得了不同程度的成就,但是总体来看,距建立起高度可依赖的商业决策支持系统还有不小的距离。
  那么基于AI在过去几年的重大突破, 并和OR、BI结合是否可以催生新的商业决策模式呢?我们把这个新的模式称为智能商业,Intelligent Business,这是真正的智能,而不仅仅是商业情报。
  (1)智能商业的定义
  我们试图给智能商业一个定义。大家都知道到目前为止AI本身都没有一个业界公认的标准。在这里我们只是试图给智能商业一个框架性定义,为后面的讨论做一个基础。我们认为智能商业是AI增强的决策支持系统,服务于企业中需要决策的各级人员,应该具备实时、闭环、自动进化、全局优化的特征,以及自动识别问题的能力,目的在于提高企业决策的效率和质量,增强企业在数字经济时代的竞争力。
  (2)智能商业框架
  这就是我们提出的智能商业框架(上图),可以看到这个框架跟传统的BI模式在单体层面上基本类似,都是有一个数据层,一个模型层,上面有应用层,但是这一代跟上一代有什么不一样的地方呢?
  首先它不再是一个企业内部的局部优化,它要考虑自己在供应链上下游的情况,也要考虑不同供应链之间的关系,即要考虑一个完整的产业生态网状结构的关系。
  其次从数据层面,处于现在这样一个大数据的时代,企业所能接触到的数据的丰富程度是空前的。以前更多的是挑战打通内部的数据孤岛,现在除了内部数据,还有供应链上下游企业之间点对点的数据交互,还有更大的云化的外部数据。
  在传统的决策支持系统里,因为没有明确的相关性,这些外部数据的利用率很低。但是外部环境对企业经营可能有更大的影响,外部数据隐含着很多相关性,利用现在的大数据技术,可以为企业决策带来更多的数据信息,通过AI的方式把里面有用的信息挖掘出来,应用到整个决策支持系统里面。
  第三个层面就是利用反馈和闭环能够对模型进行自动的优化。
  (3)与传统商业决策系统的不同
  当然现在我们只是提出这样一个智能商业的框架,这只是一个起点。当这个框架真正变成现实,它跟传统的商业决策支持系统相比会有几点不同:
  传统DSS中最终决策者是人;在智能商业决策支持系统更多的是人机交互,而部分达到自动化决策。
  分析的主题以前是人提出明确主题,由机器帮助分析;将来机器会发现你还没意识到的问题。
  从数据上,原来是非实时的,来源封闭的;将来的数据应该是实时的、来源开放的。
  从模型上以前是固定的,没有自动优化的机制;将来的模型应该是自动优化的。
  应用范围上以前是企业内部;将来会是全产业链的。
  (4)智能商业的演进
  当然,这会是一个长期奋斗的目标,会需要五年、十年甚至更长的时间,现在只是从理论上提出这样一个框架, 以帮助我们开展下一步的工作。
  关于模型的自动优化,我想再进一步解释一下,这可能是我整个演讲里最重要的一句话(这不是一个绕口令):
  为构建一个支持决策的优化模型而做出的关于决策变量的决策,这可能恰恰是AI-Enhanced DSS的核心所在。
  AI的应用可能使模型构建和演变的决策变得自动化,意味着模型本身,包括决策变量、目标函数、约束条件,这些成为了优化的决策变量,形成了一个优化的嵌套,这也意味着基于机器学习的模型自动适应和自动演化成为可能。当然,这无论从理论上还是实践上都需要大量的工作要做,但是这样的机制才是真正的Intelligent Business,这是我们努力的终极目标。
  (5)智能商业行业价值提升
  这是我们做的一个智能商业的行业价值提升分布图(上图),显示了哪些行业会更早地从智能商业的实施中尽快得到收益。横轴是从可行性角度,纵轴是从价值提升角度。可行性考虑的是一个行业的数据化和信息化基础,价值提升更多的是考虑一个行业的竞争激烈程度,决定了这个行业企业是否有足够动力用更激进的方法增强在商业竞争中的竞争力。