常用空间分析数据挖掘及方法(二)

2017-08-31 11:03:24 来源: 未知
常用空间分析数据挖掘及方法
  模糊集理论 (Fuzzy Sets Theory)
  模糊集理论是L.A.Zadeh教授在1965年提出的。它是经典集合理论的扩展,专门处理自然界和人类社会中的模糊现象和问题。利用模糊集合理论,对实际问题进行模糊判断、模糊决策、模糊模式识别、模糊簇聚分析。系统的复杂性越高,精确能力就越低,模糊性就越强,这是Zadeh总结出的互克性原理。模糊集理论在遥感图像的模糊分类、GIS模糊查询、空间数据不确定性表达和处理等方面得到了广泛应用。

  空间特征和趋势探侧(Characterization and Trend Detection)方法
  这是Ester等人在第4届KDD国际研讨会 (1998)上提出的基于邻域图 (neighborhoodgraphs)和邻域路径 (neighborhoodpath)概念的挖掘算法。Ester等将一个空间特征定义为空间数据库中具有空间/非空间性质的目标对象集,并以非空间属性值出现的相对频率和不同空间对象出现的相对频率 (目标对象集相对于整个数据库)作为感兴趣的性质,从空间目标集合经过它的相邻扩展后的集合中,发现相对频率的明显不同,以此提取空间规则:空间趋势探测挖掘是从一个开始点出发,发现一个或多个非空间性质的变化规律,这种算法的效率在很大程度上取决于其处理相邻关系的能力。

  云理论 (Cloudy Theory)
  这是李德毅博士提出的用于处理不确定性的一种新理论,包括云模型 (Cloud Model),虚拟云 (Virtual Cloud)、云运算 (Cloud operation)、云变换 (Cloud Transform)和不确定性推理 (Reasoning under Uncertainty)等主要内容。运用云理论进行空间数据挖掘,可进行概念和知识的表达、定量和定性的转化、概念的综合与分解、从数据中生成概念和概念层次结构、不确定性推理和预测等。

  图像分析和模式识别 (Image Analysis and Pattern Recognition)方法
  空间数据库 (数据仓库)中含有大量的图形图像数据,一些图像分析和模式识别方法可直接用于挖掘数据和发现知识,或作为其它挖掘方法的预处理方法。用于图像分析和模式识别的方法主要有:决策树方法、神经元网络方法、数学形态学方法、图论方法等。

  证据理论 (Evidence Theory)
  由Schafer发展起来的证据理论是经典概率论的扩展。证据理论又称Dempster-Schafer理论,它是Dempster在20世纪60年代提出,在70年代中期由Schafer进一步发展,形成处理不确定性信息的证据理论,其重要贡献在于严格区分不确定和不知道的界线。证据理论将实体分为确定部分和不确定部分,可以用于基于不确定性的空间数据挖掘。利用证据理论的结合规则、可以根据多个带有不确定性的属性进行决策挖掘。证据理论发展了更一般性的概率论,却不能解决矛盾证据或微弱假设支持等问题。

  遗传算法 (Genetic Algorithms)
  遗传算法(简称GA)是模拟生物进化过程的算法,最先由美国的John Holland教授于20世纪60年代初提出,其本质是一种求解问题的高效并行全局搜索方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。遗传算法已在优化计算、分类、机器学习等方面发挥了显著作用。数据挖掘中的许多问题,如分类、聚类、预测等知识的获取,可以表达或转换成最优化问题,进而可以用遗传算法来求解。

  数据可视化方法 (Data Visualization Approach)
  人类的可视化能力,允许人类对大量抽象的数据进行分析。人的创造性不仅取决于人的逻辑思维,而且取决于人的形象思维。人脑的空间认知分析能力目前尚无法全部用计算机代替,因此可视化技术为知识发现提供了有力的帮助。为了了解数据之间的相互关系及发展趋势,人们可以求助于可视化技术。海量的数据只有通过可视化技术变成图形或图像,才能激发人的形象思维—— 从表面上看来是杂乱无章的海量数据中找出其中隐藏的规律。数据可视化技术将大量数据以多种形式表示出来,帮助人们寻找数据中的结构、特征、模式、趋势、异常现象或相关关系等。从这个角度讲,数据可视化技术不仅仅是一种计算方法,更是看见不可见事物或现象的一种重要手段和方法。

  地学信息图谱方法 (Geo-informatics Graphic Methodology)
  地学信息图谱是地球信息的重要表现形式与研究手段,也是地球信息科学的重要组成部分。地学信息图谱综合了景观综合图的简洁性和数学模型的抽象性,是现代空间技术与我国传统研究成果结合的产物,可反演过去、预测未来。图是指地图、图像、图解,谱是指不同类别事物特征有规则的序列编排。图谱是指经过深入分析与高度综合,反映事物和现象空间结构特征与时空序列变化规律的图形信息处理与显示手段。地球信息图谱是由遥感、地图数据库与地理信息系统(或数字地球)的大量地球信息,经过图形思维与抽象概括,并以计算机多维动态可视化技术显示地球系统及各要素和现象的宏观、中观与微观的时空变化规律;同时经过中间模型与地学认知的深入分析研究,进行推理、反演与预测,形成对事物和现象更深层次的认识,有可能总结出重要的科学规律。地学信息图谱不仅应用于数据挖掘,而且服务于科学预测与决策方案。

  地学信息图谱具有以下4个重要功能:①借助图谱可以反演和模拟时空变化;②可利用图的形象表达能力,对复杂现象进行简洁的表达;③多维的空间信息可展示在二维地图上,从而大大减小了模型模拟的复杂性;④在数学模型的建立过程中,图谱有助于模型构建者对空间信息及其过程的理解。
  地学信息图谱是形、数、理的有机结合,是试图从形态来反演空间过程的一种研究复杂系统的方法论。地学信息图谱中的空间图形思维、分形分维等方法均可直接用于空间数据挖掘领域。目前,地学信息图谱的基本理论及其方法体系还不完善,还有待于进一步研究。

  计算几何方法 (Computer Geometry Methods)
1975年,Shamos和Hoey利用计算机有效地计算平面点集Voronoi图,并发表了一篇著名论文,从此计算几何诞生了。计算几何中的研究成果已在计算机图形学、化学、统计分析、模式识别、空间数据库以及其它许多领域得到了广泛应用。计算几何研究的典型问题包括几何基元、几何查找和几何优化等。其中,几何基元包括凸壳和Voronoi图、多边形的三角剖分、划分问题与相交问题:几何查找包括点定位、可视化、区域查找等问题;几何优化包括参数查找和线性规划。